Research Topic — Adaptive Compression Strategies for Federated Learning

l.  AQG!: Adaptive Searching for More Efficient Quantization Precision

« Adjusted the quantization precision adaptively based on the client’s updates.
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« Developed an optimal quantization precision strategy. | el
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« Significantly reduced communication costs. L I P L}
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Research Topic — Additional Communication Challenges in Federated Learning

IIl. SAFARIB!; Sparsification Strategy under Limited and Unreliable Communications

» Provided theoretical analysis of sparse model similarity under bounded data dissimilarity.

» Achieved fast and robust convergence with 60% of the weights pruned and 80% of the client updates lost.

IV. Survey of Communication Challenges in Federated Learning!*
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[3] Mao Y, Zhao Z, Yang M, et al. Safari: Sparsity-enabled federated learning with limited and unreliable communications[J]. IEEE Transactions on Mobile Computing, 2023.
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Research Topic — Efficient Fine-Tuning in Resource-Limited Environments

V. FL-TACPEL Multi-Task Fine-Tuning of Large Pretrained Models

» Trained task-specific low-rank adapters for downstream task adaptation.

* Achieved enhanced task performance with reduced communication cost.
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VI. Adaptive Parameter-Efficient Fine-Tuning (Ongoing Work)

» Achieved efficient fine-tuning through an adaptive resource allocation strategy.
« Achieved effective fine-tuning by optimizing the cost-generalization trade-off.

[5] Ping S*, Mao Y*, Liu Y, et al. FL-TAC: Enhanced fine-tuning in federated learning via low-rank, task-specific adapter clustering[C]. ICLR 2024 Workshop on Large Language Model (LLM) Agents.
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